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The rational design and synthesis of a supramolecular reagent

(SR) composed of two distinct hydrogen bonding sites

(pyrazole–benzamide), and four co-crystals resulting from

reactions between this SR and a variety of carboxylic acids

are described; the observed primary intermolecular interaction

is consistent and predictable in each case.

In supramolecular synthesis the desired products are typically held

together by reversible intermolecular interactions, and therefore

synthetic procedures normally have to take place in a one-pot

process.1

A possible solution to the problem of making one-pot synthesis

‘‘sequential’’ may be to devise modular assembly processes based

upon a hierarchy of intermolecular interactions. The hydrogen

bond lends itself readily to electrostatic or geometric fine tuning,

and there have consequently been numerous reports on the

construction of specific motifs and architectures through selective

hydrogen bond interactions.2

Recent work on isonicotinamide has demonstrated that it is a

reliable supramolecular reagent (SR) which, in combination with

carboxylic acids,3 produces co-crystals in a high supramolecular

yield.4 In binary 1 : 1 isonicotinamide/carboxylic acid co-crystals,

the primary intermolecular interaction is typically the O–H…N

hydrogen bond between the acid and the N-heterocyclic nitrogen

atom (Fig. 1).

The physical basis for this behavior can be ascribed to the

tendency of the system to maximise electrostatic interactions. The

pyridyl nitrogen atom and the –OH moiety provide the best

hydrogen bond acceptor and donor,2,5 respectively, and these

moieties display a strong preference for each other. To place this

hierarchical view of competitive molecular recognition events on a

firmer footing, it is necessary to establish whether intermolecular

interactions can be manipulated by altering the balance between

the two binding sites on a ditopic SR. Unfortunately, isonicoti-

namide does not offer a good test bed for such studies because it is

not possible to modify one binding site without affecting the other,

as both are connected to the same conjugated system.

Consequently, we synthesized a new SR that would allow an

examination of the competition between two uncoupled binding

sites.

The key to understanding and predicting the supramolecular

behavior of this family of SRs is the relative hydrogen bonding

ability (based on basicity and molecular electrostatic surface

potential) of the N-heterocycle. If the pyridyl site is replaced with a

more basic moiety such as benzimidazole (while retaining the

amide as the second binding site), an incoming carboxylic acid will

again bind to the N-heterocycle rather than to the amide.6 On the

other hand, if the basicity of the nitrogen atom is lowered

sufficiently, the resulting O–H…N hydrogen bond should at some

point become so weak that the carboxylic acid abandons the

N-heterocycle in favor of an acid…amide dimeric interaction.7

To test this hypothesis, we synthesized a new ditopic SR,

4-[(pyrazol-1-yl)methyl]-benzamide, and allowed it to react with

a series of carboxylic acids.8 The calculated molecular electrostatic

potential surfaces9 of three relevant ditopic SRs (1: isonicto-

tinamide, 2: 4-[(benzimidazol-1-yl)methyl]-benzamide and 3: 4-

[(pyrazol-1-yl)methyl]-benzamide) and their pKa values10 are

shown in Fig. 2.

The two binding sites on 4-[(pyrazol-1-yl)methyl]-benzamide are

separated by a methylene bridge, which allows for their

independent tuning by the use of electron donating/withdrawing

groups. The increased flexibility of the molecule also enhances

solubility, which typically facilitates the solution-based synthesis of

co-crystals.
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The crystal structure determination of 1 shows that a binary 2 :

1 co-crystal has been prepared, as intended.11 Two symmetry

related acid…amide hydrogen bonds (N…O 2.515(2) s and O…O

2.932(3) s) drive the assembly of this co-crystal and create the

primary trimeric supermolecule (Fig. 3). Adjacent trimers are

organized through long N–H…O contacts (ca. 3.26 s) between the

anti proton of the amide and an –OH moiety on a neighboring

supermolecule.

The crystal structure determination of 2 shows that a binary 2 :

1 co-crystal formed, as expected.12 The primary intermolecular

interaction in 2 is the heteromeric O–H…O/O…H–N acid…amide

motif (O…O 2.586(2) s and N…O 2.868(2) s). Symmetry related

acid…amide synthons generate the central trimeric supermolecule

(Fig. 4). Adjacent supermolecules are interconnected through a

secondary N–H…N interaction between the anti proton of the

amide and the free pyrazole nitrogen atom (N…N 2.978(2) s), and

oriented perpendicular to each other.

3 is a co-crystal composed of benzoic acid and 4-[(pyrazol-1-

yl)methyl]-benzamide in the expected 1 : 1 ratio,13 with two

inequivalent dimeric supermolecules constructed from heteromeric

acid…amide dimers (N…O 2.9740(15) s and O…O 2.5692(13) s;

N…O 2.8599(15) s and O…O 2.5702(13) s) (Fig. 5). Each dimer

is linked to an adjacent symmetry related dimer through an N–

H…N interaction between the anti proton of the amide and the

free pyrazole nitrogen atom (N…N 2.9946(16) and 2.9840(15) s).

The structure determination of 4 shows a co-crystal of the SR

and 2-fluorobenzoic acid in a 1 : 1 ratio.14 The driving force for the

construction of this co-crystal is the amide…acid heteromeric

dimer (N…O 2.879(2) and O…O 2.5415(17) s) (Fig. 6). Adjacent

dimers are linked through an N–H…N interaction between the

anti proton of the amide and the free pyrazole nitrogen atom of an

adjacent dimer (2.954(2) s).

All four structures display the same principle motif; the ditopic

pyrazole/benzamide SR consistently binds to a neighbouring

carboxylic acid via its amide moiety.15 This supramolecular

behaviour is in stark contrast with the interactions that have been

observed between carboxylic acids and SRs composed of an amide

moiety and substantially more basic N-heterocyclic nitrogen atoms

than the pyrazole moiety (e.g. pyridine or benzimidazole).

These results demonstrate that it is possible to move and

reorganize molecules within supramolecular aggregates by follow-

ing relatively simple design principles based on solution-based pKa-

values or calculated molecular electrostatic potential surfaces. Even

though concepts such as pKa values do not translate into bond

strengths or free-energies of complexation, they are clearly valuable

supramolecular indicators when applied to members of the same

functional group class in a systematic manner.

This study also supports the idea that a hierarchical view of

intermolecular interactions can provide a foundation for effective

and versatile synthetic supramolecular strategies, because hydro-

gen bond strengths of specific molecular building blocks can be

carefully tuned through relatively simple covalent modifications.

Thus, by modifying the electrostatic nature of individual binding

sites by covalent means, it should be possible to refine

supramolecular synthesis to the point where we can construct a

wide variety of heteromolecular architectures with predetermined

connectivities and dimensions.
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3 C. B. Aakeröy, A. M. Beatty and B. A. Helfrich, J. Am. Chem. Soc.,
2002, 124, 14425.

4 In the Cambridge Structural Database (v. 5.27) there are over 25 binary
isonicotinamide–carboxylic acid co-crystals. The acid–py hydrogen
bond is present in over 90% of those structures, corresponding to a
high supramolecular yield (frequency of occurrence of desired motif).

5 M. C. Etter, Acc. Chem. Res., 1990, 23, 120; M. C. Etter, J. Phys.
Chem., 1991, 95, 4601.
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